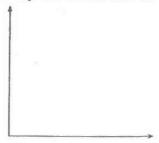

4.



A student is asked to find the value R_χ of an unknown resistor connected to the circuit shown, using a graphical method. R is a variable resistance provided by a resistance box. V is the reading of the voltmeter connected across R. The internal resistance of the voltmeter is large. Two new dry cells of voltage $1.5 \, \text{V}$ each is used to provide a voltage V_0 of $3 \, \text{V}$. Assume that the internal resistance of such a dry cell battery is negligible.

- (a) Indicate the polarity of the voltmeter by labeling its terminals with + and signs.
- (b) In order to plot a graph, the student is asked to take several voltmeter readings (V) by varying the resistance R.

(i)	Write do	wn an expr	ession relating	V, R, V	$_0'$ and	R_{χ}		

- (ii) Rearrange the variables in order to plot a straight line graph with $\frac{1}{V}$ on the Y axis.
- (iii) Draw a rough sketch of the expected curve. Label the axes.

- (iv) How would you find the value of R_χ from the graph?
- (v) How would you find the voltage V_0 of the battery using the graph?

that	you would choose for R in O	rder to obtain the straight 1	ith a tick (/) the range of value ine graph.
	$25 \Omega - 500 \Omega$	()	
	$25 \Omega - 1500 \Omega$	()	
	25 Ω - 2000 Ω	()	**
Giv	e the reason for your choice.		
) (i)		mentally whether the data h	ave been affected by the possible
) (i)	How would you check experi run-down of the battery?	mentally whether the data h	ave been affected by the possible
	run-down of the battery? If you have discovered that the	e battery has run-down, how new 1.5 V cells to give 3 V	would you design another battery
	run-down of the battery?	e battery has run-down, how new 1.5 V cells to give 3 V	would you design another battery
	run-down of the battery?	e battery has run-down, how new 1.5 V cells to give 3 V	would you design another battery